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LETTER TO THE EDITOR 

Exact solutions of certain relaxation equations 

Adam J Makowski 
Institute of Physics, Nicholas Copernicus University, ul Grudzigdzka 5/7, 87-100 Toruli, 
Poland 

Received 7 April 1987 

Abstract. The master equation for vibrational relaxation of harmonic oscillators is solved 
in the case when both vibration-vibration (vv) and vibration-translation (v) mechanisms 
are involved in the process. It  is shown that for the Landau-Teller transition probabilities 
the derived master equation has the same general solution as that recently published for 
an incomplete vibrational relaxation. Some other possible applications of the solution are 
also discussed. 

We consider a vibrational relaxation of a pure gas of diatomic molecules in a harmonic 
oscillator approximation. The molecules are kept in contact with a heat bath at a 
constant temperature T. Assuming that excitation-de-excitation VT and w processes 
can be described with the help of the first-order perturbation theory and the selection 
rule is An = * l ,  we get the following form of VT and vv transition probabilities: 

Pn,m = Pi,o[(m + 1 )  exp(-f))6n-l,m + m 8 n + l , m l  ( l a )  

( I b )  

where Ql,, = = Qo,l. 
The factor exp(-e) follows from detailed balance and 8 = hw/kT.  Such a factor 

does not appear in ( l b )  since we deal with molecules of one kind. We do not intend 
to discuss here the conditions in which either the VT or w process is the dominant 
one (see Osipov 1960, Treanor et al 1968). 

It not difficult to show that the master equation takes the form (see, e.g., Osipov 
and Stupotschenko 1963) 

dx,/dt = ZPlo{(n + l )xn+l  - [ n  +(n+ 1 )  exp(-6)]xn + n exp(-6)x,_,) 

Q N , M  = 
n,m Ql,o[n(N+ 1 ) 8 n - l , m s N + 1 , M  + N ( n  + 1 ) 8 n + l . m 8 ~ - 1 , ~ 1  

+ ZQlo{(n + l ) ( a  + l ) x n + ,  - [(n+ l ) a  + n ( a  + l)]x, + nax, - . l } .  ( 2 )  
The symbols x,, Z and a ( t )  stand for density of molecules in the state n, frequency 
of collisions and the average number of vibrational quanta at time t defined as 
Z, n x , ( t )  = a(t), respectively. The first term on the RHS of (2) respresents the well 
known model of VT relaxation (Landau and Teller 1936) and the second one contributes 
the resonant w terms. 

The time-dependent solution of ( 2 )  has only been known in the case without w 
terms. Assuming the initial condition in the form of the canonical distribution x,(O) = 
[ 1 - exp( - e,)] exp( -ne,), where 0, = h o /  kT, with To denoting the initial vibrational 
temperature, the solution of ( 2 )  for the VT process is (Montroll and Shuler 1957) 

(3)  x,(r) = 11 -exp(-Q(t))I exp(-nQ(t>) 
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where 

) .  (4) 
exp( e - e,)] exp( - t /  7,) - [ 1 - exp( --eo)] exp 6 

([' - [ 1 - exp( 8 - e,)] exp( - t /  T ~ )  - [ 1 - exp( -eo)] Q( t )  = In 

The symbol T~ = {ZP,,( 1 - exp( -e)]}-' can be considered as a VT relaxation time. 

equation (2). To this end let us introduce two functions: 
It is the purpose of this letter to show that there exists an exact solution of the full 

p ( f )  = Z[PIO+ Q l O ( Q  + 1)l ( 5 a )  

Y ( ~ ) = ~ [ P l o e x P ( - ~ ) + Q I O ~ l ~ - - l .  (5b) 

dxn/dt = CL (6) 
It is worthy of note that Greenwood et al (1982) suggested equation (6), without 
specifying the functions p (  t )  and y(  t ) ,  for a very dilute mixture of harmonic oscillators 
in a monatomic gas expanding rapidly in a vacuum. In such a case the bath temperature 
T and frequency of collisions Z are decreasing functions of time and transition rates 
do not obey detailed balance. They called this kind of relaxation process an incomplete 
vibrational relaxation since, as the expansion proceeds, the density of the gas decreases 
and may become too low to guarantee approaching the equilibrium state. Greenwood 
et a1 (1982) were able to show that an incomplete vibrational relaxation in a beam or 
jet proceeds via a continuous sequence of canonical distributions since the exact 
solution of (6) has the form of (3 )  with 

Then, after simple manipulations, we get from equation (2) 

n + 1 ) x n + 1 -  [ n  + ( n  + 1) Y( t)1xn + ny( t Ixn-1) .  

( 7 )  
e x ~ ( -  eO)lM( t )  - [Ao - exp(- eo) Mol 

[ I -  exP(-eo)lA( 1 )  - [ h a -  exP(-~o)Mol 
Q( t )  = In 

where 

and A o = A ( t = O ) ,  M o = M ( t = O ) .  
We have thus shown that the 'old' problem given by equation (2) has the same 

general solution as that for the incomplete relaxation discussed above. In our 
case the only time-dependent quantity is a. Hence for the VT process (first term 
on the RHS of (2)) A ( t )  =exp(-O)[l - e ~ p ( - O ) ] - ~  e x p ( t / ~ ~ )  and M ( t )  = 
[l-exp(-O)]-' exp(t/T1). It is a simple matter to check that with these functions 
equation (7) reduces to the known result (4). The populations x , ( t )  do not depend 
on w coupling since the w process conserves the number of vibrational quanta. This 
can be observed by multiplying (2) by n and summing up over n from 0 to infinity, 
from which we obtain 

dx 
-+ZP,,[l dt  -exp(-e)]a = ZP,,exp(-e) (9) 

which has the solution 
a ( t ) = a m + ( a o - a m )  exp(-t/T1) 

a, = exP(- 0 )  
1 -exp(-e)' 

a,  = exP(-e) 
1 - exp( - e,) 
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In terms of the solution (lo),  equation (4) has the following simple form: Q( t )  = 
In( 1 + a-'( t ) ) .  This completes the well known facts on vibrational relaxation of 
harmonic oscillators kept in contact with a heat bath at a constant temperature 
(Oppenheim er al 1967, Ormonde 1975). 

It has been shown under the detailed balance assumption (Anderson et al 1964a, b) 
that relaxation of harmonic oscillators with one-step transitions proceeds canonically. 
The example given by Greenwood er al (1982) also proves this for an incomplete 
relaxation. This letter provides some other examples. To see this, let us allow the pure 
diatomic gas to expand in vacuum. Then, instead of exp(-0) in (2) we have to 
introduce a function of time. Other quantities are also time dependent but again the 
solution is given by equations (3) and (7). In this case the solution of (9) is more 
complicated than previously but can be given in a closed simple form. Even in the 
mixture of two diatomic gases, incomplete relaxation can again be described by a 
solution like (3) and (7). This can be observed after simple modifications of equation 
(2) have been performed. 

A need for studying relaxation processes with the reservoir temperature varying in 
time is motivated by quite a large number of measurements on molecular beams and 
free jets (see, e.g., Greenwood et al 1982). The recent example of a numerical approach 
to a related problem of vibrational energy redistribution in polyatomic molecules is 
given by Rachev and Kancheva (1986). 

The work has been supported in part by the Polish Ministry of Science and Higher 
Education (Project CPBP.01.06). 
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